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SYNOPSIS 

A simple method for seismic design is developed based on the 
mean failure rate, or the mean crossing rate of the response vector 
out of the region of safe behaviour for a structure. The components 
of the response vector are earthquake effects at the critical points 
of the structure. A knowledge of the spectral density of the ground 
acceleration, the target mean failure rate, and the modal parameters 
of the structure is needed for application of the method. Resultant 
structures are anticipated to fail at a mean rate smaller than the 
target value. Results reported for a shear frame and an asymmetrical 
structure demonstrate that the actual and the target mean failure 
rates are nearly equal for many situations of practical interest. 

RESUME  

Une methode simple de calcul antisismique est developee d'apres 
le taux de rupture moyen ou le taux de croisement moyen sur le vecteur 
de reponse hors de la zone de comportement securitaire de la structure. 
Les elements du vecteur de reponse sont des effets sismiques aux points 
critiques de la structure. Une connaissance de la density du spectre, 
de l'acceleration au sol, du taux de rupture moyen cible et des pro-
prigtes modales de la structure s'avere necessaire pour l'application 
de la methode. On prevoit que les structures analysees se ruptureront 
un taux moyen moans eleve que la valeur cible. Les resultats 

rapportes pour l'ossaturesoumiseau cisaillement et pour une structure 
asymetrique demontrent que les raux de ruptures reels et les taux 
de ruptures moyens cibles sont presque egaux pour toute situation 
d'interet pratique. 
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INTRODUCTION 

Seismic design of many structures, such as tall buildings or 
equipment and piping systems of nuclear plants, is based on the 
requirement that the maximum response at the critical points does 
not exceed an allowable value. The maximum response is obtained in 
general by combining extreme responses recorded in various modes of 
vibration excited by the design earthquake, where modal response 
maxima can be obtained from the response spectrum. The absolute or 
algebraic sum and the square root of the sum of the squares of the 
largest modal responses are combination rules currently used in prac-
tice. It is assumed typically that the structure is as safe as the 
critical points. Findings of this paper show that the assumption 
can be unconservative, when complex structures are involved. In 
addition, the response spectrum method lacks control over reliability. 

A major purpose of this paper is the development of a method for 
seismic design of structures of prescribed reliability when the 
ground acceleration is random. This risk dependent method is based 
on the random vibration theory and results reported in (16). A struc-
ture is deemed safe if the random, time-dependent response vector 
never leaves a region of safe behaviour during the reference period; 
the safety of a structure is inferred from that of the critical points 
considered simultaneously. The components of the response vector are 
earthquake effects at the critical points. The safe region and the 
response vector depend on the probability law of the ground accelera-
tion, and the modal parameters of the structure. The target reliabil-
ity controls the size of the safe region. 

Safety estimates are based on the mean failure rate, or the mean 
rate at which the response vector crosses out of the safe region. 
The dependence of the mean failure rate and reliability on the cor-
relation between responses at the critical points is investigated in 
the next section. Approximations for the mean failure rate and use-
ful results regarding the correlation between modal coordinates are 
also reported. Application of the risk dependent method is demon-
strated for structures with widely and closely spaced modal frequen-
cies. For comparison, the current design approach is extended to 
account for the uncertainty in the ground acceleration. Results re-
ported correspond to a stationary Gaussian ground acceleration with 
constant spectral density. 
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STRUCTURES SUBJECTED TO BASE RANDOM MOTION 

Structural systems having a finite number, n, of degrees-of-
freedom and classical modes of vibration are considered only. It is 
assumed that the ground acceleration, A(t),is a weakly stationary 
random process with a mean of zero and that the structure is in steady-
state motion. 

The coordinate, D.(t) of the j'th mode is also a stationary 3 

process in the wide sense which satisfies the differential equation: 

D' (t) + 2 Rj  w. D' (t) + w.
2  D (t) = - F A(t) (1) 
3 

The dots denote the derivative with respect to time and w., 8. , and 
Fj ra J 

are the frequency, the coefficient of damping or damping tio, 
and the participation factor, respectively, for the j'the mode. 

Correlation between Modal Coordinates  

Thecovariancematrixofthevector) ), D. (t), 

D (t)} is evaluated in Appendix I based on the theory of linear 
systems for an uncorrelated ground acceleration, A(t), with one-sided 
spectral intensity Go. The approach can be used also when A(t) is 
correlated. In this case, the ground acceleration, A(t), and its 
derivatives can be modeled by a linear system with state vector 

AT(t) = {A(t), }driven by white noise. The covariance 
matrix of X(t) can be found also from Eq. 21 applied for the augmented 
system with state vector {XT  (t), AT(t)}. 

Shown in Fig. 1 is the variation of the correlation coefficients, 
p13  and o24

, for the modal coordinates IDi(t), (t)} and their
'

deri- 
vatives ID! D (t)}, respectively, with the ratio, A = wi , 
ofmodalfrequencieswhen8=14=83.The correlation coeffi-
cients p13  and p 24  are equal when the modes have the same damping 
ratio and increase with 8 , as shown also by Eq. 23. They are approxi-
mately 0.07, 0.29, and 0.61 for 8 = 0.02, 0.05, and 0.1, respective-
ly, when A = 0.8. The modal coordinates are nearly unrelated for 
many cases of practical interest and are perfectly correlated as 
wi~a)j . 

Correlation coefficients between modal coordinates having differ-
ent damping ratios are shown in Fig. 2. The correlation coefficients 
pl3  and p 24  vary with p = 8./ 8j  monotonically, for given 8. and 

A. 
• • They are nearly equal for the cases considered. Modes having differ-

ent damping ratios are never perfectly correlated. The largest value 
of p

13 
and p

24 
 is found when the modal frequencies are nearly equal. 

The dependence of the correlation coefficients p 13  and p 224  on p = 
(3,./Pj  for w. = wj is demonstrated in Fig. 3. From Eq. n, p 13  = n -24 
when A = 1.0. 

Results in Figs. 1 to 3 show also that the coordinates of the 
first few modes for symmetrical buildings of shear or flexural beam 
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type are nearly unrelated for common damping ratios because w2/ wl  = ; 
3.0; w3/w2  = 1.67; w3/w1  = 5.01 or w2/wi  = 6.27; w3/w2  = 2.80; 

w3/wi  = 17.56, respectively. However, the coordinates of translation- ! 
al and torsional modes for asymmetrical structures can be strongly T 
related for many practical situations.  

Note also that the correlation level between {D.(0} controls 
the accuracy of modal combination rules, such as the absolute (ABS) 
or algebraic (ALS) sum and the square root of the sum of the square 
(RSS) of the largest modal responses. For example, the RSS rule 
yields satisfactory results when the modal coordinates are weakly 
related (11, 14). On the other hand, the ABS or ALS procedures are 
accurate when the modal responses are in or completely out of phase, 
respectively. The latter conditions are satisfied with approximation 
for strongly related modal coordinates. The rules considered can 
be inaccurate when the coordinates of the significant modes have very 
different correlation levels. In this case, strongly related modal 
responses can be combined according to the ABS or ALS rules. The 
RSS rule can be used then to combine remaining modal responses with 
effects obtained in the first step. 

These considerations of accuracy of the modal combination rules 
do not apply to complex structures in general, because the critical 
points can be much safer than the structure in these cases (3, 7). 
To account for this effect, building codes of many countries postulate 
larger design levels for complex structures, for example. The ap-
proach is arbitrary, however. 

Estimation of Reliability 

Consider a n degree-of-freedom structure subjected to a Gaussian 
ground acceleration, A(t), for a period, T. The behaviour of the 
structure is assumed linear so as the load effect at the k'th criti- 
cal point is, 

n 
Yk(t) = E c D.(t) 

j=1 kJ J (k = 1, 2, ...., m) (2) 

The number, m, of critical points may not be equal to n. The co-
efficients, {ck }, are linear functions of the modal shapes. They 
can depend also

j 
 on parameters such as structural stiffnesses, geometry, 

or sectional characteristics when {Yk(t)} denote stresses. 

The structure is safe if the following conditions are satisfied 
during T, 

I I 

- dk Yk(t) dk (k = 1, 2, ...., m) (3) 

where dk and dk are allowable values depending on the load effect and 
the structural elements involved. The safety condition can be express-
ed also in terms of the response vector, YT(t) = fYi(t), Y2(t),.... 
Ym(t)}, in which case the reliability is the probability that Y(t) 
never leaves the safe region, D, during T, 

Ps(T) = P (Y(t) c D, t e (0,T )) (4) 
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where P(B) is the probability of event B. From Eq. 3, the safe 
region is a rectangle in the m -dimensional space. Shown in Figs. 
4 and 6 are rectangular safe regions yielded by Eq. 3 for m=2. 

The reliability is (2,4,10,16), 

P
s
(T) = P (Y (0) E D) exp (-vT ) (5) 

where v is the mean failure rate, or the mean rate at which Y(t) 
crosses the boundary, 3D, of the safe region, D, from inside, and 
P(Y(0) CD) is the instantaneous reliability at t=0. The result is 
based on the assumption that the crossings of Y(t) follow a homogene-
ous Poisson process with mean rate of v . This assumption is accu-
rate when Y(t) belongs to D with large probability, at any time (4). 

Evaluation of the mean failure rate, v , may be numerically 
prohibitive. From (2), 

= DD 0 
fdy 7dy

n 
 y

n  fY Y
n
" n )

(6) 

where fyy;)
is the joint density of Y(t) and Y(t) = nY

L
(t). 

The exterior normal, {ns}, to the boundary of the
n 
 safe region depends 

on the point yE ap so as Y(t) and Y:(t) are correlated in general. 
The processes Y(t) and Y'(t) are independent when ap is plane, the 
response is Gaussian, ana Yk  (t) is unrelated to Y'9,

(t) (16). The 
latter assumption is valid usually because D. (t) and D!(t) are nearly 
unrelated, as shown in Appendix I. When Y(t1) and Y'(t3 are indepen-
dent, the density fY 

Y"  y') is fY  (y) fY' (y'n  ) yielding from 
Eq. 3, —9 n 

m 
v = E akk { f dy f

Y 
 (y) + fd) fY (0/ (7) 
— 

k=1 57 k 
DD'

k
air 1  

where DD
k
,Gick 

and DD
II 
 are plane regions of DD for which = -d' and 

yik  = d" respectively. The parameter is the standard deviation 
of the derivative, Yk(t), of Y

k
(t). 

The result in Eq. 7 can be given also in the form 
m 

▪ = ( vt k
k s'k 

▪  "u
k 
p u ) (8) 

k=1 

where P' and P' are the probabilities that -d' 4 Y
2 
(04 du for 

ki k conditioned on Y
k
(t) = -d' and Y

k
(t) = d

k 
 "' respectively, at any 

time t. The parameters, 

vek = 1 c/kk exp(-1/2
d 2 

( k ) ) (9) 

Cr
k

k 
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and 

G , dv 2 ) 
v" = kk expk-( K) 

2i a
k

ak 

and from below the level d" t4,12). A knowledge of the density 
of Y(t) at any time t, standard deviations of {Y,(t)},  and {dk' k } 
is needed to find v . The parameters v;, and \II( 

 depend simply on 
the standard deviation, a

k' 
of Y

k
(t) an aka. However, practical 

use of Eqs. 5 and 8 is limited due to numerical difficulties for 
estimation of P' and P" when m ),3. 

A conservative approximation for the mean failure rate,v , can 
be obtained from Eq. 8 if the probabilities Uld andfq } are assumed 
equal to unity. 

v = E vk = E (vk' u" ) (11) 
k=1 k=1 

The approximate mean failure rate is attractively simple as it de-
pends only on the standard deviations of {Yk(t} and eflk(t1 and 
the design levels, {di,, dic  }. The parameter xi

, 
 = vk' is also 

the mean rate at which the k'th critical point fails if considered 
separately. 

Results reported in (16) and Figs. 4 to 7 show that the approxi-
mation in Eq. 11 is accurate in many cases. From (16), the approxi-
mate mean rate at which a shear frame with three degrees-of-freedom, 
dl = d" = d, m=n=3, and modal parameters given in Table 1 fails is 
nearly equal to v, although the response vector has strongly related 
components. The correlation coefficient between the interstory dis-
placements Y1(t) and Y2(t) is 0.9396, for example. 

Satisfactory results are reported also in Figs. 4 to 7 for square 
and rectangular safe regions when the Gaussian response vector, Y(t), 
has m=2 components with zero mean, unit variance, and correlation co-
efficient r . The components of Ykt) have unit variance and are 
assumed unrelated to Y(t). Shown in Figs. 4 and 6 is the variation 
of and v with the level, d, for selected values of r . The ratio 
of exact to approximate mean failure rates is demonstrated in Figs. 
5 and 7. 

From Figs. 4 to 7, accurate estimates of safety can be obtained 
in general from the approximate mean failure rate, v . The approxi-
mation is most satisfactory when the components of the response vector 
are not strongly related. It can be too conservative when the cor-
relation between {Yk(t)} is strong and the critical points have nearly 
equal safety. In these cases, the mean failure rate, v, can be approx-
imated by any vk  because the components of Y(t) cross aD simultane-
ously. The approximate mean failure rate, ')", is always accurate when 
critical points have different safety levels and safe structures are 
involved. Results show also that the hypothesis , that the structure 

(10) 

are the mean rates at which Y (0 crosses from above the level -d' 
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is as safe as its critical points, is unconservative. The hypothesis 
can be unsatisfactory in many cases. 

RISK DEPENDENT DESIGN 

Evaluation of required strength for elements of structures with 
known geometrical parameters and material is considered. The approach 
follows current design practice based on the verification of various 
design strategies. Modal parameters, geometrical configuration of 
the structure, and the frequency content of the earthquake need to be 
known to find the seismic response and to check adequacy of a design 
strategy. 

Design Response  

Current procedures for seismic design, such as the response 
spectrum method, are deterministic. Design levels, {dk}, at any critical 
point, k, of a structure can be found by combining modal response 
maxima,{dkj}. For example, the maximum earthquake effect at the kith 
critical point predicted by the ABS and RSS rules are,respectively, 

dk  = E I I dkj  
j=1 

and 
n 2 

d
k 

= ( E d
kj
) 

j=1 

The maximum response, dk , at k in the jlth mode of vibration is 
deterministic and can beJ obtained from the response spectrum. 

Modal combination rules can be applied also when the ground 
acceleration, A(t), and the modal coordinates, {D. (t)}, are random. 
In this case, the maxima, {Dkj}, of the modal responses,{cki D. (t)}, 
observed for a period, T, are also random. Application of tqs. 
12 and 13 requires the replacing of {Dkj}by related deterministic 
quantities, {dkj}. 

From (5, 14), dkj can be assumed equal to the mean of the maximum 
modal response, 

2 0.5772 
0 j

-\/2  hikoj'° +1/21n(w.T) 
) (14) Tr 

O

G

cu

F

j.3   

because the uncertainty in Dkj is generally small. Modal response 
maxima can be approximated also by dkj  = bki  -1-a6k,i, where a = 1,2, 
... and ak,j is the standard deviation of Dkj 

ak,j = ckj 1iG
0 j 
r.2 

4 .(.0.3 \/ 12 1-11((11 J.-0  J J  
or by the (1-p) - fractile of Dkj  (9), 

(12)  

(13)  

dkj = Dkj c ki  

Tr (15) 
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dk. = D
k ,p = 

ckJ  7G0  F2
-2 ln(- 27 ln(1-p)) (16) 

48.w.3 (o 
J

T 
 

J J 
Results reported in Eqs. 14 to 16 correspond to a stationary Gaussian 
ground acceleration, A(t), having constant one-sided spectral density 
with intensity Go, see Appendix I and (9). 

A significant limitation of the current approach for seismic de-
sign is the lack of consistency from a risk point of view. Unsafe or 
very safe structures are generated in many situations. The approach 
can be unsatisfactory for design of special structures due to the 
limited available experience. 

A risk dependent method for seismic design can be based on the 
approximate mean failure in Eq. 11. The method requires a knowledge 
of the modal parameters of the structure, the power spectral density 
of the earthquake, and the target mean failure rate vF. Structures 
designed according to this method fail at a mean rate,v , smaller 
than VF. Results show that the actual and the target mean failure 
rates are nearly equal for many situations of practical interest. 

Design levels,{dk}, produced by the risk dependent method are 
based on the mean rates,{vk}, at which the critical points fail rather 
than modal response maxima. The design condition for dl = dk = dk  is 

(- 1/2 
d
k ) < v 
2 

vk = 1 G kk exp . F,k (17) 5---2 Tr ak k 

yielding the design level 

d
k 

= 0-
k

-2 ln ( 21( v v
F ,k 

 ) 
G 
kk 

where vF k = VF
/g(k) is the target mean failure rate for the 10 th 

critical'point and Zk  1/g(k) = 1. The parameter vF,k  is vF/m when 
the critical points have the same safety level, for example. 

As previously mentioned, the reliability of structures designed 
according to the risk dependent method exceeds the target value. From 

Eq. 17, vk = `'F,k = vF/g(k) when the design levels in Eq. 18 are used. 
From Eq. 11, the mean rate, v, at which the structure fails is smaller 
than i vk  = vv. The degree of conservatism depends on the correla-
tion between the components, {Yk(t)}, of the response vector, Y(t), 
and the target reliability. From Eq. 2, the dependence between 
{Y,(t)}is controlled by the correlation between modal coordinates, 
and the relative magnitude and sign of the influence coefficients, 
{ckj}. 

The design approach in Eq. 17 may yield very conservative designs 
for complex structures when the correlation coefficients between res-
ponses at the critical points are nearly one. In these situations, 
design can be based on the conditions vk  '< vF 

 (k=1,2,...m) because 
the structure is approximately as safe as its weakest critical point, 

(18) 



see Figs. 5 and 7. Such a design strategy is also demonstrated in 
this section. 

Design of Shear Frames  

The three stories plane shear frame analysed in Ref. 1, p. 267, 
is designed. Modal parameters reported in (1) are also given in 
Table 1. The ground acceleration, A(t), is a stationary Gaussian 
white noise process with one-sided spectral density of intensity Go. 

The response vector, Y(t), has three components denoting inter-
story displacements. The frame is safe if lYk(t)k dk (k=1,2,3) 
during T , where (dk}  are design levels obtained from Eqs. 12, 13, 
or 18. The influence coefficients in Eq. 2 are ckj = 0

k, 
 - 

where 0' = tO
1 i'2 i' 03,j 

is the j'th modal shape and   0k,j 
is 

the displacement At floor k. 

The shape and the relative size of the safe region, D, yielded 
by the ABS and RSS rules are nearly unchanged for the modal response 
maxima predicted by Eqs. 14 to 16. They are shown in Fig. 8 in the 
first octant of the reference (al, a2, a3), where a = dk/6k  are 
reduced levels. As expected from Eqs. 12 and 13, the safe region 
produced by the ABS rule contains that yielded by the RSS rule. 

Mean failure rates,{vk} , of separate stories for designs based 
on the ABS and RSS rules are shown with solid and dotted lines in 
Fig. 8, respectively, for various al. Approximate mean failure rates, 
v, found for the two design strategies are demonstrated also. The 
difference between al  yielded by the ABS and RSS rules is accounted 
for but the shape and the relative size of D produced by the two 
strategies are assumed the same for all al. From (16), the approxi-
mation in Eq. 11 is accurate for this structure, although the cor-
relation coefficient, rkz, between Yk(t) and Yk(t) takes on the values 
r12 = 0.9396, r13 = 0.7901,and r23  = 0.8504, see Appendix II for de-
tails. The strong correlation between responses at the critical 
points is not due to the modal coordinates which are nearly unrelated, 
see Table 1 and Fig. 1. Rather, it is caused by the dominant effect 
of the first mode. 

As previously mentioned, safety of designs yielded by Eqs. 12 to 
16 depends on the modal combination rule and the modal response maxima 
selected. For example, the approximate mean failure rate for designs 
produced by the ABS compared to RSS rule is 3 to 15 times larger and 
dl increases by 50% when dkj  varies from Dkj to Tikj+50k  . or Dki p with 
p= 10-5. These results and those in Fig. 8 demonstrateqhe lack of 
consistency from a risk point of view of the current approach for 
seismic design. 

On the other hand, the reliability of structures designed from 
Eq. 18 slightly exceeds the target value for many practical situations, 
as reported in (16) and Figs. 4 to 7. In addition, the risk depen-
dent design method and the design approach based on Eqs. 12 to 16 
have the same level of complexity. 
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Designs based on Eq. 18 require a knowledge of the standard 
deviations, {ak;akk}  , of {Yk(t); Yk(t)} , the target mean failure 
rate, vF'  and {g(k)}. Evaluation of 0k and akk  is demonstrated in 

Appendix II. From Eq. 18 with g(k) = m = 3, the reduced design levels 
a, = 3.58; d2 = 3.67; a3  = 3.67 are obtained when VF  = 10-2. The 
shape of the safe region yielded by Eq. 18 for this design situation 
is similar to that found from the RSS rule. However, the design level, 
or the size of the safe region, produced by the RSS rule is indepen-
dent of v F' 

Design of Structures with Torsional and Translational Modes  

A one-story building similar to that analysed in (11, 13) is 
considered, see Fig. 9. The mass is uniformly distributed on the 
floor but the centers of mass and stiffness are on the x-axis at a 
distance e=0.05 a. The structure is symmetric with respect to the 
x-axis so as only two modes involving translation in the y-direction 
and rotation about the mass center are excited when the earthquake 
acts as in Fig. 9. The stiffnesses in the x and y-directions are 
proportional to 2bx3 and by  3

, respectively. The ground acceleration, 
A(t), is as in the previous example. 

Shown in Fig. 10 with dotted and solid lines are, respectively, 
the ratio, w2/wi, of modal frequencies and the correlation coefficient, 
p , between the modal coordinates as a function of by  /bx  . The largest 
correlation between Di(t) and D2(t) is approximately 0.7. It is ob-
tained for by  /bx  =1.4 when the modal damping ratios are 8= 81= 82  = 
0.10. The dependence of w2/ wi and p on by/bx  is expected. For 
example, w2/ wl is infinity as b

y.
vanishes because the structure is 

symmetric. Large w2/ wi are obtained also when bx  becomes small be-
cause the torsional stiffness decreases significantly. 

Design can be based on the largest stresses Y1(t) and Y2(t) re-
corded at the bottom of the walls on the x and y directions, respec-
tively. The correlation coefficient, r, between Y1(t) and Y2(t) is 
demonstrated in Fig. 11. It varies insignificantly with $ but strongly 
depends on the influence coefficients. For example, r is 0.9952 when 
by  /bx  = 0.6, although the correlation coefficient,p , between the 
modal coordinates is 0.0160 for 8 = 0.10. On the other hand, the de-
sign by/bx  = 1.4 and 8 = 0.10 for which p = 0.70 yields only r = 
0.4518. As expected from Appendix II, r is nearly independent of 8 
because the modal coordinates are not strongly related. 

The risk dependent method is applied for design of structures 
with b /bx  = 0.6 and 1.4 and selected mean failure rates, vF=vf/k /M, 
where,  is the stiffness in the y direction and M is the 

total mass. The damping ratio assumed is 8 = 0.10 for both modes. 
Safety conditions vk  = VF  and vk  = VF/m = vF/2 are used when by/bx  = 

0.6 due to the strong correlation between Y1(t) and Y2(t). From 
Table 2, the design level is less sensitive than the mean failure 
rate to the safety condition selected. It follows that design can be 
based on Eq. 18 even when the response vector has strongly related 
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components. The design for by/bx  = 1.4 is based on Eq. 18 only due 
to the low correlation between Y1(t) and Y2(t). As expected from 
Figs. 4 to 7, the reliability of designs produced slightly exceeds 
the target value. 

CONCLUSIONS 

A conservative method for seismic design yielding structures 
with safety levels nearly equal to the target value has been developed. 
Application of this risk dependent design method is relatively simple 
and requires a knowledge of the spectral density of the ground accele-
ration, the target mean failure rate, and the modal parameters of the 
structure. 

Design is based on the condition that the critical points of a 
structure fail at a mean rate equal to a fraction of the target mean 
failure rate required for the structure. The sum of the mean failure 
rates for the critical points is equal in general to the target value 
considered for the structure. The safety conditions may differ when 
the response vector has strongly related components and the structure 
is complex. Designs yielded by the risk dependent method strongly 
depend on the target mean failure rate. In contrast, current ap-
proaches for seismic design based on modal response maxima cannot 
produce structures of prescribed reliability. 

The risk dependent method has been applied for design of a plane 
shear frame and an asymmetrical one-story building subjected to a 
stationary Gaussian ground acceleration with one-sided spectral 
density of constant intensity. Design situations considered involve 
very different correlation levels between modal coordinates and bet-
ween responses at the critical points. Results show that the risk 
dependent method is accurate for many practical situations. 

APPENDIX I - CORRELATION BETWEEN MODAL COORDINATES 

Consider a multidegree-of-freedom structure having the coordin-
ates D1(t) and D1(t) for the i'th and j'th mode, respectively. The 
vector XT (t) = {ni(t), W(t), D.(t), D!(t)} satisfies the linear 
system, 

X'(t) = F X(t) + H A(t) (19) 

where A(t) is the ground acceleration, and 

0 1 0 

F= - w.2 -28i  wi  1 , H= -r. 1 

0 0 0 1 0 (20) 

0 0 - w .2 -213.w . -F. 
J J 

The state X(t) is random when A(t) is a stochastic process. As 
therealpart,-4w.or - 8.w. of the eigenvalues of F is negative, 

J j' 
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the random process, X(t) is stationary in the wide sense when t is 
large and A(t) is weakly stationary (6,8,15). For large t, the mean 
of X(t) is zero if the ground acceleration is a zero mean process. 
The covariance matrix, E = Iyrs }, of the state vector can be obtain-
ed in the steady-state motion from the algebraic equation (6, 15) 

F E + E F' + H (7 Go) H' = 0 (21) 

when A(t) is the white noise process with one-sided spectral density 
of intensity Go. 

From Eqs. 20 and 21, the variance of and the correlation co- 
efficients, 1} iPrs = Yrs/(Yrr Yss) , between the modal coordinates 
and their derivatives are, 

 

111 - uG0Pi 
2 

3 122 - wi2 Yll 

 

 

= 71-G F. 
133 

48.w. 
3 3 

2 

144 = w.2 133 

(22) 

and 

3 

 

p
13 

= 8 47(Au + 1) 13.2/R 

P24 = p13 (A P)/ (AP + 1) (23) 

p14 = -P23 = -4X VT (1 - A2
) 1312/R 

where 

R = 4 A(Ap + 1) (A +P ) 

A = w./ w. J 

= (3j  

8j2 + (1 -A
2
)
2 

(24) 

For example, yll  is the variance of X1(t) = Di(t), p13  is the cor-
relation coefficient between X1(t) = Di(t) and X3(t) = Dj(t), and 

p14 is the correlation coefficient between X1(t) = Di(t) and X4(t) = 

D!(t). 

From Eq. 23, p14  is very small for current damping ratios so 
as D1(t) and D!(t) can be assumed unrelated. For example, the largest 
absolute value3of p14 is approximately 0.055 when . and 8. do not 131 ex- 
ceed 0.10. 
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APPENDIX II - COVARIANCE MATRIX OF RESPONSE 

From Eq. 2, the response vector is, 

Y(t) = C D (25) 

where C = {ck } is a matrix of influence coefficients depending on 
modal shapes and the response considered, and DT (0 = 1(t),...., 
D,(01 is the vector of modal coordinates. 

The response vector is a random process stationary in the wide 
sense when the ground acceleration, A(t),is weakly stationary, see 
Appendix I and Eq. 25. It has the mean zero when A(t) is zero mean. 
The covariance matrix of Y(t) and its derivative, Y'(t), can be 
obtained from 

E
YY 

= c E
-DD 

CT 
- 

(26)  

= 

E-Y' Y' D'D' 
- C E CT 

where E 
Z

- -  

= E (Z i) is the covariance matrix of the random 
1 Z2 -1 -2 

vectors Z1  and Z assumed to have zero mean. 2 

For example, the variance of the k'th components of Y(t) and 
Y'(t) are, respectively, (27)  

Gk2=E
ckj2E03

.2(01  + E cki  ckj  E {Di(t) Dj(t)} 
J1 i,j=1 

and 
2 

a = 
kk j=1 

2 
c
kj 

E -0' 2(t)} + E 
i,j=1 
i#j 

(28)  

cki ckj E {DI (t) D:(01 

where E { } is the expectation operator. The correlation coefficient, 
between Yk(t) and Y (t) can be obtained from 

n n (29) 

rkQ Gk ak ckj  ckj D.(t)} ) 
j=1 J i,j=1 

i#j 

Results in Eqs. 27 to 29 can be approximated by (16), 

2 2 TrG r.2 
ak - E ckj o j (30) 

j=1 4(3.w.3  
J J 
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n 
2.  2

7G .2  
a = 2 c . 0r 1  kk

j=1 kJ 4(3.
J
w. 

(31) 

(33) 

n 

rkk 
a
k
a = E c

kj 
j=1 

TrG r.2 
0 j 

48.0).3  
3.3 

(32) 

when the modal coordinates are nearly unrelated and the ground accele-
ration, A(t), is white with one-sided spectral density of intensity 
G. 

From Table 1 and Fig. 1, the modal coordinates of the three 
degree-of-freedom shear frame considered are nearly unrelated so as 
Eqs. 30 to 32 can be applied to find the covariance matrix of Y(t) t 
and {akk}' The following results are obtained when the components I.
of Y(t) are interstory displacements, also see (16), 

2 G 2 2 
0
1 
= 0.203 o ; 02  = 0.280  Go ; a

3 
=0.250  Go  

327
2
8 327 i2

8 32ir
2
8 i 

2  2 , 
011= 0.0317 Go ; 0

22
2 = 0.0448 

G
o • a33 = 0.0598 

G
o (34) , t 

8 8 8 
and 

r
12 

= 0.9396; r
13 

= 0.7901; r
23 

= 0.8504 (35) 

when the damping ratio is the same for all modes, $i = S, and A(t) 
is the white process previously considered. From Eqs. 23 and 26 and 
Table 1, the correlation coefficients between Yk(t) and Yi(t) are 
nearly zero so as Eq. 7 can be applied. 
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TABLE 1 

Modal Parameters of the Shear Frame (from Ref.1, p.267) 

Modal 

Parameters 
(1) 

Mode j 

1 
(2) 

2 
(3) 

3 
(4) 

(1)./(27) 1.00 2.18 3.18 

4)j,l 
0.314 -0.511 3.18 

(1)j,2 0.685 -0.489 -2.18 

1.00 1.00 1.00 
)/ 3  

r • 1.40 -0.50 0.098 

TABLE 2 

Risk Dependent Design. The Case 
b y  /bx ' = 0.60. r12  = 0.9952; S = 0.10 

v/V
F 

a1 d2 
v* 

F 
vk= vF /2 vk= VF  vk=vF /2 vk= vF  vk= vF /2 vk= vF  

(1) (2) (3) (4) (5) (6) (7) 

10-5 0.59 1.17 4.72(3%) 4.58 4.70(3%) 4.55 

10-4 0.58 1.15 4.21(4%) 4.04 4.19(4%) 4.02 

103 0.57 1.13 3.62(6%) 3.42 3.59(6%) 3.39 

10
-2 0.56 1.10 2.92(9%) 2.67 2.88(10%) 2.63 
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Fig. 4 - Dependence of mean failure rate on correlation between 
components of response for square safe regions. 
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